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a b s t r a c t

Computer experiments with qualitative and quantitative factors occur frequently in
various applications in science, engineering and business. For choosing input settings of
such computer experiments, marginally coupled designs have been proposed in Deng,
Hung and Lin (2015) for economic reasons. Although the concept of marginally coupled
designs is well understood, the results on design construction are scarce. In addition,
the constructed designs may have clustered points for the quantitative factors or cannot
accommodate many quantitative factors, especially for two-level qualitative factors. To
address this issue, this paper focuses on constructing marginally coupled designs when
all qualitative factors have two levels. The proposed construction uses subspace theory
in algebra, and the resulting designs can accommodate more quantitative factors while
maintaining attractive design properties than the existing approaches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Computer experiment is an efficient and cost-effective surrogate of physical experiment to study complex systems. It
is not uncommon that computer experiments have both quantitative and qualitative factors (Qian et al., 2008; Han et al.,
2009; Zhou et al., 2011). In such experiments, different qualitative factors may have identical or distinct numbers of levels.
This article focuses on a special case that all qualitative factors have two levels. For example, in a knee computer model for
investigating wear mechanisms of total knee replacements in bioengineering (Han et al., 2009), the qualitative factors are
the prosthesis design and the loading pattern, both at two levels. The levels of the prosthesis design are ‘‘cruciate retaining’’
and ‘‘posterior stabilized’’, while the levels of the loading pattern are ‘‘the loading corresponding to normal gait’’ and ‘‘the
loading corresponding to stair climbing’’. For reasons of efficiency and economy, orthogonal arrays, also known as fractional
factorial designs, are most commonly used in practice for qualitative factors.

For efficiently choosing input settings for computer experiments with both qualitative and quantitative factors,
marginally coupled designs proposed byDeng et al. (2015) have been argued to be a cost-effective alternative to the strategic
plan, sliced Latin hypercube designs (Qian and Wu, 2009). The construction of such designs have been explored by Deng
et al. (2015) and He et al. (2016). The designs for quantitative factors in the former, however, have undesirable clustered
points. For a prime power s, the latter has developed the characterization for marginally coupled designs of su runs, and
the obtained designs for qualitative factors can accommodate as many as (s + 1 − k)su−2 factors of s levels and designs for
quantitative factors can hold k factors without clustered points, where 1 ≤ k ≤ s. Therefore, the latter can only handle up
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to two quantitative factors when qualitative factors are all at two levels. The goal of this article is to introduce a method for
constructing marginally coupled designs possessing a moderate number of quantitative factors when all qualitative factors
have two levels.

Although the characterization of a marginally coupled design with su runs is derived, there is still lack of construction
of desirable marginally coupled designs. We present here a new construction for such designs with qualitative factors of
two levels. The construction is simple and it is done by introducing a novel use of subspaces of the vector space on Galois
field GF(2u), where u is an integer greater than one. Along the way, useful theoretical results are derived. The results allow
us to construct marginally coupled designs of 2u runs. In the newly constructed designs, designs for qualitative factors can
accommodate up to 2u1−1 factors and designs for quantitative factors are Latin hypercube designs without clustered points
for up to 2u−u1 factors, for 1 ≤ u1 < u.

The remainder of this paper is organized as follows. Section 2 introduces notation and background, theoretical results
and the construction method are presented in Section 3, and the last section concludes the paper with discussions.

2. Notation, definitions and background

Amatrix of size n×m, where the jth column has sj levels 0, . . . , sj−1 is called an orthogonal array of strength t , if for any
n× t sub-array, all possible level combinations appear equally often. It is denoted by OA(n, s1 · · · sm, t). If s1 = · · · = sm = s,
it is shortened as OA(n,m, s, t). If all rows of an OA(n,m, s, t) can form a vector space, it is called a linear orthogonal array
(Hedayat et al., 1999).

A Latin hypercube is an n × k matrix each column of which is a random permutation of n equally spaced levels (McKay
et al., 1979). In this article, these n levels are represented by 0, . . . , n − 1, and a Latin hypercube of n runs for k factors is
denoted by LHD(n, k). A cascading Latin hypercube of n = n1n2 points with levels (n1, n2) is an n2-point Latin hypercube
about each point in the n1-point Latin hypercube (Handcock, 1991). Latin hypercubes can be obtained from orthogonal
arrays (Tang, 1993). Given an OA(n,m, s, t), replace the r = n/s positions having level i by a random permutation of
{ir, . . . , (i+1)r −1}, for i = 0, . . . , s−1. The resulting design achieves t-dimensional uniformity. This approach is referred
to as level replacement-based Latin hypercube approach (He et al., 2016).

Let D1 be an OA(n,m, s, 2) and D2 be an LHD(n, k). Design D = (D1,D2) is called a marginally coupled design, denoted
by MCD(D1,D2), if for each level of every column of D1, the corresponding rows in D2 have the property that when
projected onto each column, the resulting entries consist of exactly one level from each of the n/s equally-spaced intervals
{[0, s − 1], [s, 2s − 1], . . . , [n − s, n − 1]}. Let D2,ij and D̃2,ij be the (i, j)th entry of D2 and D̃2, respectively, and let

D̃2,ij =


D2,ij/s


, i = 1, . . . , n and j = 1, . . . , k, (1)

where ⌊x⌋ denotes the greatest integer less than or equal to x. Design D2 can be obtained from D̃2 via the level replacement-
based Latin hypercube approach. Lemma 1, due to He et al. (2016), provides a necessary and sufficient condition for an
MCD(D1,D2) when D1 is an s-level orthogonal array. The result indicates that to construct D2, it is equivalent to construct
D̃2 that satisfies such a condition.

Lemma 1. Given that D1 is an OA(n,m, s, 2), D2 is an LHD(n, k) and D̃2 is defined via (1), then (D1,D2) is a marginally coupled
design if and only if for j = 1, . . . , k, (D1, d̃j) is an OA(n, sm(n/s), 2), where d̃j is the jth column of D̃2.

We now review the background on vector spaces which are building blocks of the proposed construction. Define

S2 =


0 1 0 1
0 0 1 1


.

A linear combination of rows in the subarray of S2 without the zero column can be expressed as (2)

λ1(1 0 1) + λ2(0 1 1), λ1, λ2 ∈ GF(2), (2)

whereGF(2) = {0, 1} and+ represents addition bymodulus 2, that is, we have 0+0 = 0, 0+1 = 1, 1+0 = 1, and 1+1 = 0.
Take all such 22 linear combinations in (2) as rows of a new array, then the resulting array is a linear OA(22, 3, 2, 2).

For u ≥ 3, Su is defined inductively as follows,

Su =


Su−1 Su−1
02u−1 12u−1


, (3)

where 02u−1 and 12u−1 are row vectors of length 2u−1. It can be seen that all columns of Su form a vector space of dimension
u. In the same fashion as in (2), a linear OA(2u, 2u

− 1, 2, 2) can be generated by taking all the combinations of rows of the
matrix which is obtained by excluding the column of zeros, which is the first column of Su.

Let x and y be any two column vectors of Su. If xTy = 0 modulus 2, we say x and y are orthogonal, where the superscript
T means the transpose. For any nonzero column vector x ∈ Su, let O(x) consist of all those column vectors in Su that are
orthogonal to x, that is,

O(x) = {y ∈ Su | xTy = 0}. (4)
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We can see that O(x) in (4) is a (u − 1)-dimensional subspace of Su. Denote by N(x) the matrix consisting of all nonzero
column vectors of O(x), and construct a new array by taking all row combinations of N(x) as its rows, then the obtained
array is a linear OA(2u, 2u−1

− 1, 2, 2), which contains two subarrays each of which is an OA(2u−1, 2u−1
− 1, 2, 2). On the

other hand, it is known that a linear OA(2u−1, 2u−1
− 1, 2, 2) can be used to construct a 2u−1-level column vector via the

method of replacement (WuandHamada, 2011). Therefore, one (u−1)-dimensional subspaceO(x) can provide one 2u−1-level
column vector of length 2u.

3. Construction using subspace theory

This section introduces a new method for constructing marginally coupled designs in which the designs for qualitative
factors are orthogonal arrays of two levels. Throughout this paper, let u be an integer greater than one, and Eu1 =

{e1, . . . , eu1}, where e1, . . . , eu1 are u1 independent column vectors of Su, with 1 ≤ u1 < u. Denote by |S| the number
of elements in a set S and A \ B the set consisting of elements belonging to A but not B. Before presenting the proposed
construction, we provide Lemmas 2–4 which are cornerstones for establishing Theorem 1.

Lemma 2. For the set

P = {ξ | ξ = ei1 + ei2 + · · · + ei2t+1 , 1 ≤ i1 < · · · < i2t+1 ≤ u1, eij ∈ Eu1}, (5)

we have |P| = 2u1−1.

Since each member of P is a sum of an odd number of elements in {e1, . . . , eu1}, Lemma 2 follows directly by the property
of binomial coefficients.

Lemma 3. For Su in (3) with u ≥ 2, we have |Su \ {
u1

i=1 O(ei)}| = 2u−u1 , where 1 ≤ u1 < u, ei ∈ Eu1 and O(ei) is defined
by (4).

Proof. Let n∗
= |

u1
i=1 O(ei)|. By the inclusion–exclusion principle, we have that

n∗
=


1≤i≤u1

|O(ei)| −


1≤i<j≤u1

|O(ei) ∩ O(ej)| + · · · + (−1)u1−1
|O(e1) ∩ O(e2) · · · ∩ O(eu1)|. (6)

Since e1, . . . , eu1 are independent, there are 2u−2 column vectors in Su which are orthogonal to both ei and ej, which means
|O(ei) ∩ O(ej)| = 2u−2, 1 ≤ i < j ≤ u1; and there are 2u−p column vectors orthogonal to a set of p distinct independent
columns {ei1 , . . . , eip}, 2 ≤ p ≤ u1. Therefore,

n∗
=

u1

1


2u−1

−

u1

2


2u−2

+ · · · + (−1)u1−1

u1

u1


2u−u1 = 2u

− 2u−u1 .

Thus, |Su \ (
u1

i=1 O(ei))| = 2u
− (2u

− 2u−u1) = 2u−u1 . �

Lemma 4. For any subset S ⊂ Su and any nonzero column vector x ∈ Su, if S and O(x) are disjoint, where O(x) is defined in (4),
we have that (i) there does not exist three vectors a, b, c ∈ S such that a + b = c, and (ii) for any set Q in which each element
is a sum of an odd number of vectors in S, as

Q = {q = y1 + y2 + · · · + y2t+1 | yj ∈ S, 1 ≤ 2t + 1 ≤ |S|},

then Q ∩ O(x) = ∅.

Proof. For part (i), suppose a, b, c ∈ S such that a + b = c. Then {0u, a, b, c} is a two-dimensional subspace of Su, where
0u ∈ Su is a column of all zeros. Since S andO(x) are disjoint, the union S∪O(x)must contain 2+(u−1) = u+1 independent
columns. This causes a contradiction because S ∪ O(x) is a subset of Su whose dimension is only u. Hence, part (i) is proved.
For part (ii), consider an element q = y1 + y2 + · · · + y2t+1 ∈ Q , where yi ∈ S. For any y ∈ S, then y ∉ O(x), that implies
yT x = 1 modulus 2. So qT x = (y1 + y2 + · · · + y2t+1)

T x = 2t + 1 modulus 2, then qT x = 1. Hence, q ∉ O(x), and we have
Q ∩ O(x) = ∅. �

New notation is introduced here. Let G0 be the u × 2u1−1 matrix each column of which is an element of P defined in
Lemma 2. Without loss of generality, suppose {e1, . . . , eu1} are the first u1 columns of G0. Each column of G0 is a linear
combination of an odd number of columns among its first u1 columns. Write G0 = (gT

1,0, . . . , g
T
u,0)

T , where gi,0 is the ith row
of G0.

According to Lemma 3, count the set Su \ {
u1

i=1 O(ei)} by

Su \


u1
i=1

O(ei)


= {a1, a2, . . . , a2u−u1 }. (7)
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For j = 1, . . . , 2u−u1 , let Gj be the u × (2u−1
− 1) matrix by taking all nonzero vectors of O(aj) as columns, and write

Gj = (gT
1,j, . . . , g

T
u,j)

T , where gi,j is the ith row of Gj. We now propose the following procedure to construct designs D1 and
D̃2 of 2u runs.
Step 1. Construct a 2u

× 2u1−1 matrix whose rows are from linear combinations of rows in G0, as

λ1g1,0 + λ2g2,0 + · · · + λugu,0,

where λi ∈ GF(2) for i = 1, . . . , u. Denote the constructed array by D1. Then D1 is a linear OA(2u, 2u1−1, 2, 2),
referring to the verification for Construction 3 of Rao-Hamming construction, Section 3.4 of Hedayat et al. (1999).

Step 2. For j = 1, . . . , 2u−u1 , construct a 2u
× (2u−1

− 1) matrix whose rows are from linear combinations of rows in Gj, as

λ1g1,j + λ2g2,j + · · · + λugu,j,

where λi ∈ GF(2) for i = 1, . . . , u. Denote the obtained matrix by D2,j. Then D2,j is a linear OA(2u, 2u−1
− 1, 2, 2)

by the same reason stated in Step 1.
Step 3. For j = 1, . . . , 2u−u1 , obtain a vector of length 2u with 2u−1 levels based on D2,j via the method of replacement, and

denote it by d̃j. Let D̃2 = (d̃1, d̃2, . . . , d̃2u−u1 ).

For ease of presentation, the above construction for designs D1 and D̃2 consisting of Steps 1 to 3 is called the subspace
method.

Theorem 1. For designs D1 and D̃2 constructed by the subspace method, we have that (i) D1 is an OA(2u, 2u1−1, 2, 3), (ii) D̃2 is
an OA(2u, 2u−u1 , 2u−1, 1), and (iii) each column of D̃2 is orthogonal to all columns of D1.

Proof. To show part (i), first note thatD1 is a linear OA(2u, 2u1−1, 2, 2) according to the construction process of Step 1. Next,
we should showD1 in fact is of strength three. It is seen that a1 in (7) is not in any of {O(e1), . . . ,O(eu1)}, hence all e1, . . . , eu1
are not in O(a1), implying {e1, . . . , eu1} ∩ O(a1) = ∅. Take S = {e1, . . . , eu1}, then by item (ii) of Lemma 4, one can obtain
P ∩ O(a1) = ∅, since each member of P is a combination of an odd number of elements in S; and furthermore, no three
elements a, b, c ∈ P have a + b = c by item (i) of Lemma 4. This ensures any three columns of G0 are independent, and the
strength of D1 must be three. So, D1 is an OA(2u, 2u1−1, 2, 3).

For aj’s in (7) and j = 1, . . . , 2u−u1 , O(aj) is a subspace of dimension u − 1. Then the array D2,j generated from Gj is a
linear OA(2u, 2u−1

− 1, 2, 2) consisting of two subarrays each of which is an OA(2u−1, 2u−1
− 1, 2, 2), and the resulting

d̃j from D2,j by the method of replacement is a 2u−1-level vector of length 2u. As a result, D̃2 = (d̃1, d̃2, . . . , d̃2u−u1 ) is an
OA(2u, 2u−u1 , 2u−1, 1).

For any j = 1, . . . , 2u−u1 , we have P ∩ O(aj) = ∅ according to item (ii) of Lemma 4, which means each column of G0 is
independent to Gj, hence each column of D1 is independent to D2,j, and thus orthogonal to d̃j. �

For D1 and D̃2 constructed by the subspace method, let D2 be an LHD(2u, 2u−u1) obtained from D̃2 via the level
replacement-based Latin hypercube approach. The following corollary presents the property of (D1,D2) constructed by the
subspace method.

Corollary 1. We have that (i) design (D1,D2) is a marginally coupled design, and (ii) D2 is not a cascading Latin hypercube.

Proof. By Lemma 1 and Theorem 1, the conclusion of item (i) is direct. For item (ii),O(ai) andO(aj) present different (u−1)-
dimensional subspaces when i ≠ j, thus the resulting d̃i and d̃j are not isomorphic to each other, meaning that one of them
cannot be obtained from the other by level permutations, which yields that D2 is not a cascading Latin hypercube. �

Example 1 illustrates the proposed construction method.

Example 1. Consider u = 4 and u1 = 3. The S4 is defined in (3). Let e1 = (1, 0, 0, 0)T , e2 = (0, 1, 0, 0)T and
e3 = (0, 0, 1, 0)T . Then P = {e1, e2, e3, e1 + e2 + e3}. There are 2u−u1 = 2 column vectors in S4 \ {O(e1) ∪ O(e2) ∪ O(e3)},
named by a1 and a2, which are (1, 1, 1, 0)T and (1, 1, 1, 1)T , respectively. The subspacesO(a1) andO(a2) are listed in Table 1.
Then matrix G0 = (e1, e2, e3, e1 + e2 + e3), and matrices G1 and G2 take all nonzero column vectors of O(a1) and O(a2) as
their columns, respectively.

According to the subspace method, by Step 1, obtain D1 by including all linear combinations of rows in G0; by Step 2,
construct D2,i by including all linear combinations of rows in Gi, for i = 1, 2; by Step 3, construct d̃i from D2,i for i = 1, 2;
and obtain D̃2 = (d̃1, d̃2). For saving space, the obtained D1 and D̃2 are shown in their transposes in Table 2. One can obtain
D2 from D̃2 via the level replacement-based Latin hypercube approach. The resulting (D1,D2) is a marginally coupled design
with D2 being a non-cascading Latin hypercube according to Corollary 1.

In practice, it is desirable that design D2 in an MCD(D1,D2) possesses some guaranteed space-filling property. In fact,
this can be pursued by some proper way of substituting D2,j’s with d̃j’s. Note that this substitution is done by the method of
replacement which transforms a linear OA(2u−1, 2u−1

− 1, 2, 2) to a 2u−1-level column vector. The method of replacement
is essentially equivalent to choosing u − 1 independent columns from the orthogonal array, and then replace each level
combination of the u − 1 columns with a unique level in {0, 1, . . . , 2u−1

− 1}. For illustration, let us revisit Example 1.
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Table 1
Two three-dimensional subspaces of S4 in Example 1.

a1 Subspace O(a1)

1 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 1

a2 Subspace O(a2)

1 0 1 1 1 0 0 0 1
1 0 1 0 0 1 1 0 1
1 0 0 1 0 1 0 1 1
1 0 0 0 1 0 1 1 1

Table 2
Designs D1 and D̃2 .

Transpose of D1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

Transpose of D̃2

0 1 2 3 4 5 6 7 6 7 4 5 2 3 0 1
0 7 2 5 3 4 1 6 6 1 4 3 5 2 7 0

Table 3
Marginally coupled designs constructed by the subspace method.

u u1 D1 D2

2 1 OA(4, 1, 2, 3) LHD(4, 2)
3 1 OA(8, 1, 2, 3) LHD(8, 4)
3 2 OA(8, 2, 2, 3) LHD(8, 2)
4 1 OA(16, 1, 2, 3) LHD(16, 8)
4 2 OA(16, 2, 2, 3) LHD(16, 4)
4 3 OA(16, 4, 2, 3) LHD(16, 2)
5 1 OA(32, 1, 2, 3) LHD(32, 16)
5 2 OA(32, 2, 2, 3) LHD(32, 8)
5 3 OA(32, 4, 2, 3) LHD(32, 4)
5 4 OA(32, 8, 2, 3) LHD(32, 2)
6 1 OA(64, 1, 2, 3) LHD(64, 32)
6 2 OA(64, 2, 2, 3) LHD(64, 16)
6 3 OA(64, 4, 2, 3) LHD(64, 8)
6 4 OA(64, 8, 2, 3) LHD(64, 4)
6 5 OA(64, 16, 2, 3) LHD(64, 2)
7 1 OA(128, 1, 2, 3) LHD(128, 64)
7 2 OA(128, 2, 2, 3) LHD(128, 32)
7 3 OA(128, 4, 2, 3) LHD(128, 16)
7 4 OA(128, 8, 2, 3) LHD(128, 8)
7 5 OA(128, 16, 2, 3) LHD(128, 4)
7 6 OA(128, 32, 2, 3) LHD(128, 2)

Example 2 (Continue Example 1). In Step 3 of the subspace method, choose a three-column submatrix of D2,1, denoted by
(p1, p2, p3), corresponding to column vectors (1, 1, 0, 0), (1, 0, 1, 0) and (0, 0, 0, 1) ofO(a1); in parallel, choose a submatrix
of D2,2, denoted by (q1, q2, q3), corresponding to column vectors (1, 0, 0, 1), (1, 1, 1, 1), and (0, 1, 0, 1) of O(a2). Note that
(p1, p2, p3) and (q1, q2, q3) consist of three independent columns of D2,1 and D2,2, respectively. The replacement of D2,i’s to
d̃i’s is done by d̃1 = (p1, p2, p3)r and d̃2 = (q1, q2, q3)r , where r = (22, 21, 20)T . Since either (p1, q1, q2) or (p1, p2, q1) has
three independent columns, (d̃1, d̃2) possesses uniform stratifications in the 2 × 4 and 4 × 2 grids of the two dimensions,
that can be verified by design D̃2 in Table 2.

For practical applications, Table 3 listsmarginally coupled designswith run sizes up to 128 that can be constructed by the
subspacemethod, where the first two columns are for the parameters u and u1, and the last two columns present the design
D1 for the qualitative factors and the non-cascading Latin hypercube design D2 for the quantitative factors, respectively.
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4. Discussion

This paper introduces a method to construct marginally coupled designs MCD(D1,D2) with D1 being an
OA(2u, 2u1−1, 2, 3) and D2 being a non-cascading Latin hypercube design of size 2u

× 2u−u1 , for integers u and 1 ≤ u1 < u.
For qualitative factors of two levels, the Construction 2 in He et al. (2016) can obtain an MCD(D1,D2) with D1 being an

OA(2u, 2u−2, 2, 3) and D2 being a non-cascading Latin hypercube design of size 2u
× 2. In fact, such pairs of designs can also

be obtained by the subspace method.
The link between the subspace method and the Construction 2 of He et al. (2016) can be as follows. Let us first look

at the subspace method. To avoid the trivial case, we let u ≥ 3. Then set u1 = u − 1, e1 = (1, 0, . . . , 0, 1, 1)T ,
e2 = (0, 1, 0, . . . , 0, 1, 1)T , and so on eu−2 = (0, . . . , 1, 1, 1)T and eu−1 = (0, . . . , 0, 1, 1)T , such that for 1 ≤ i ≤ u − 2,
the ith and the last two entries of ei are ones, and other entries are zeros, and for i = u − 1, only the last two entries
of eu−1 are ones. By Lemma 2, one can obtain P based on {e1, . . . , eu−1}, then P has 2(u−1)−1

= 2u−2 elements; and by
Lemma 3, Su \ {

u−1
i=1 O(ei)} has 2u−(u−1)

= 2 elements, named by a1 and a2. It can be shown that a1 = (0, . . . , 0, 1, 0)T and
a2 = (0, . . . , 0, 0, 1)T , with the (u − 1)th entry and the uth entry being one, respectively, and other entries being zeros. As
such, by the subspace method, one can construct D1 based on G0 in Step 1, which is obtained from P , and construct D2,1 and
D2,2 based on G1 and G2 in Step 2, that are obtained from O(a1) and O(a2), respectively.

Recall Construction 2 in He et al. (2016). Suppose ẽ1, . . . , ẽu are u independent columns, such that (ẽ1, . . . , ẽu) is a full
factorial design of 2u runs. Given (ẽ1, . . . , ẽu), He et al. (2016) constructed thematrices B0, B1, B2 and B3 as follows. Matrix B0
is the saturated design generated by the first u−2 independent columns {ẽ1, . . . , ẽu−2}, B1 is the saturated design generated
by u − 1 independent columns as {ẽ1, . . . , ẽu−2, ẽu−1}, B2 is the saturated design generated by u − 1 independent columns
as {ẽ1, . . . , ẽu−2, ẽu−1 + ẽu}, and B3 is the saturated design generated by u − 1 independent columns as {ẽ1, . . . , ẽu−2, ẽu}.
In fact we can find that the matrix D1 in Step 1 of the subspace method is the matrix B2 \ B0 in the Construction 2, and the
matrices D2,1 and D2,2 in Step 2 of the subspace method are the matrices of B3 and B1 in the Construction 2, respectively.

One important issue for marginally coupled designs is the space-filling property of design D2. One way to obtain space-
filling D2 is to employ some optimization strategies with some optimality criterion when constructing D2 from D̃2 via the
level-replacement-based Latin hypercube approach (Leary et al., 2003). Another way is to use the scheme that we provide
in Example 2. Because of the amount of technical details involved, we do not present the general scheme and its associated
results for constructing space-fillingD2 here. The application of subspace theory into a prime power s > 2 is under research.
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